(Analysis by Alex Liang)

Subtask 1 ($N \le 10$):

We can directly enumerate all $2^{2N-2}$ ways to split the two arrays and check if each way satisfies the constraints.

Subtask 2 ($N \le 80$):

Let $dp[i][j]$ be the number of ways to split the first $i$ elements of the first array and the first $j$ elements of the second array such that the constraints are satisfied.

In order to facilitate finding the average of ranges quickly we can use prefix sums (we can also keep a running sum when we transition but prefix sums will be useful for the full solution). Let $P_a[i]$ denote the prefix sum of the first array and $P_b[i]$ denote the prefix sum of the second array. Then at some $dp[i][j]$, we can transition from $dp[i'][j']$ ($0 \le i' < i$, $0 \le j' < j$) if $\frac{P_a[i]-P_a[i']}{i-i'} \le \frac{P_b[j]-P_b[j']}{j-j'}$ since the average of the last subarray of the first array must be less than or equal to the average of the last subarray of the second array. Formally, our transitions will look like:

$$ dp[i][j] = \sum_{\substack{0 \le i' < i \\ 0 \le j' < j \\\frac{P_a[i]-P_a[i']}{i-i'} \le \frac{P_b[j]-P_b[j']}{j-j'}}}{dp[i'][j']} $$

Calculating the value for any $dp[i][j]$ takes $\mathcal{O}(N^2)$ time so this approach runs in $\mathcal{O}(N^4)$ time overall.

#include <bits/stdc++.h>
using namespace std;

const int MOD = 1e9 + 7;

int main(){
    ios_base::sync_with_stdio(0); cin.tie(0); 
    int n;
    cin >> n;

    int pA[n + 1] = {}, pB[n + 1] = {};

    for (int i = 1; i <= n; i++){
        cin >> pA[i];
        pA[i] += pA[i - 1];
    }
    for (int i = 1; i <= n; i++){
        cin >> pB[i];
        pB[i] += pB[i - 1];
    }
    
    int dp[n + 1][n + 1] = {};
    dp[0][0] = 1;

    for (int i = 1; i <= n; i++){
        for (int j = 1; j <= n; j++){
            for (int r = 0; r < i; r++){
                for (int c = 0; c < j; c++){
                    // (pA[i] - pA[r]) / (i - r) <= (pB[j] - pB[c]) / (j - c)
                    if (1LL * (pA[i] - pA[r]) * (j - c) <= 1LL * (pB[j] - pB[c]) * (i - r)){
                        dp[i][j] = (dp[i][j] + dp[r][c]) % MOD;
                    }
                }
            }
        }
    }
    cout<<dp[n][n]<<"\n";
}

Subtask 3 ($N \le 300$):

It is helpful to view our dynamic programming from the perspective of a grid. Consider the transition for some $dp[i][j]$. At each $j'$, we are transitioning from all $i'$ such that $\frac{P_a[i]-P_a[i']}{i-i'} \le \frac{P_b[j]-P_b[j']}{j-j'}$. In other words we are transitioning from the set of $i'$ corresponding to some $k$ smallest $\frac{P_a[i]-P_a[i']}{i-i'}$.

At each $i$, suppose we sort all rows $i'$ above it in increasing order of $\frac{P_a[i]-P_a[i']}{i-i'}$. Recall that at each $j'$ we are transitioning from the set of $i'$ corresponding to some $k$ smallest $\frac{P_a[i]-P_a[i']}{i-i'}$. These elements now correspond to the length $k$ prefix of column $j'$ (since we sorted the rows).

These ideas lead us to the following solution. Every time we enter a new row, we sort all rows $i'$ above it in increasing order of $\frac{P_a[i]-P_a[i']}{i-i'}$. Then we construct column prefix sums over these sorted rows. To transition, we iterate over $j'$. At each $j'$, we binary search for $k$ and add the length $k$ prefix sum of column $j'$. Since sorting will be $\mathcal{O}(N^2 \log N)$ in total and transitioning at each state takes $\mathcal{O}(N \log N)$ time, this solution runs in $\mathcal{O}(N^3 \log N)$ time.

#include <bits/stdc++.h>
using namespace std;

const int MOD = 1e9 + 7;

int main(){
    ios_base::sync_with_stdio(0); cin.tie(0); 
    int n;
    cin >> n;

    int pA[n + 1] = {}, pB[n + 1] = {};

    for (int i = 1; i <= n; i++){
        cin >> pA[i];
        pA[i] += pA[i - 1];
    }
    for (int i = 1; i <= n; i++){
        cin >> pB[i];
        pB[i] += pB[i - 1];
    }
    
    int dp[n + 1][n + 1] = {};
    dp[0][0] = 1;
    
    for (int i = 1; i <= n; i++){
        int psm[i][n + 1] = {};

        int R[i];
        iota(R, R + i, 0);

        sort(R, R + i, [&](int x, int y){
            // (pA[i] - pA[x]) / (i - x) < (pA[i] - pA[y]) / (i - y)
            return 1LL * (pA[i] - pA[x]) * (i - y) < 1LL * (pA[i] - pA[y]) * (i - x);
        });

        // Sort rows in increasing order of averages and construct column prefix sums
        for (int r = 0; r < i; r++)
            for (int j = 0; j <= n; j++)
                psm[r][j] = ((!r ? 0 : psm[r - 1][j]) + dp[R[r]][j]) % MOD;
        
        for (int j = 1; j <= n; j++){
            for (int c = 0; c < j; c++){
                auto chk = [&](int r){
                    // (pA[i] - pA[R[r]]) / (i - R[r]) <= (pB[j] - pB[c]) / (j - c)
                    return 1LL * (pA[i] - pA[R[r]]) * (j - c) <= 1LL * (pB[j] - pB[c]) * (i - R[r]);
                };
                if (!chk(0))
                    continue;
                
                int L = 0, H = i - 1;

                while (L < H){
                    int M = (L + H + 1) / 2;
                    chk(M) ? L = M : H = M - 1;
                }
                dp[i][j] = (dp[i][j] + psm[L][c]) % MOD;
            }
        }
    }
    cout<<dp[n][n]<<"\n";
}

Full Credit ($N \le 500$):

Let us speed up the subtask $3$ solution. If we are able to process all $j'$ in increasing order of $\frac{P_b[j]-P_b[j']}{j-j'}$, then $k$ will be non-decreasing which removes the need for binary search. Instead, we can just store $k$ and repeatedly increase it (note that it can only be increased at most $i$ times).

At each $j$ we can sort all $j'$ in increasing order of $\frac{P_b[j]-P_b[j']}{j-j'}$. If we cache our results or pre-calculate them, then we only have to do this sort $N$ times in total. Since sorting will be $\mathcal{O}(N^2 \log N)$ in total and transitioning at each state takes $\mathcal{O}(N)$ time, this solution runs in $\mathcal{O}(N^3)$ time.

#include <bits/stdc++.h>
using namespace std;

const int MOD = 1e9 + 7;

int main(){
    ios_base::sync_with_stdio(0); cin.tie(0); 
    int n;
    cin >> n;

    int pA[n + 1] = {}, pB[n + 1] = {};

    for (int i = 1; i <= n; i++){
        cin >> pA[i];
        pA[i] += pA[i - 1];
    }
    for (int i = 1; i <= n; i++){
        cin >> pB[i];
        pB[i] += pB[i - 1];
    }
    
    vector<int> ordRow[n + 1], ordCol[n + 1];

    for (int i = 1; i <= n; i++){
        // Sort in increasing order of averages
        vector<int> &R = ordRow[i];
        vector<int> &C = ordCol[i];

        for (int v = 0; v < i; v++){
            R.push_back(v);
            C.push_back(v);
        }
        sort(R.begin(), R.end(), [&](int x, int y){
            // (pA[i] - pA[x]) / (i - x) < (pA[i] - pA[y]) / (i - y)
            return 1LL * (pA[i] - pA[x]) * (i - y) < 1LL * (pA[i] - pA[y]) * (i - x);
        });
        sort(C.begin(), C.end(), [&](int x, int y){
            // (pB[i] - pB[x]) / (i - x) < (pB[i] - pB[y]) / (i - y)
            return 1LL * (pB[i] - pB[x]) * (i - y) < 1LL * (pB[i] - pB[y]) * (i - x);
        });
    }

    int dp[n + 1][n + 1] = {};
    dp[0][0] = 1;
    
    for (int i = 1; i <= n; i++){
        int psm[i][n + 1] = {};
        vector<int> &R = ordRow[i];

        // Sort rows in increasing order of averages and construct column prefix sums
        for (int r = 0; r < R.size(); r++)
            for (int j = 0; j <= n; j++)
                psm[r][j] = ((!r ? 0 : psm[r - 1][j]) + dp[R[r]][j]) % MOD;
        
        for (int j = 1; j <= n; j++){
            vector<int> &C = ordCol[j];
            int r = 0;

            // 2 pointers over columns in sorted order
            for (int c : C){
                // (pA[i] - pA[R[r]]) / (i - R[r]) <= (pB[j] - pB[c]) / (j - c)
                while (r < i and 1LL * (pA[i] - pA[R[r]]) * (j - c) <= 1LL * (pB[j] - pB[c]) * (i - R[r]))
                    r++;
                
                dp[i][j] = (dp[i][j] + (!r ? 0 : psm[r - 1][c])) % MOD;
            }
        }
    }
    cout<<dp[n][n]<<"\n";
}